

This policy has been written in line with the White Rose Mastery policy It shows progression throughout the year groups for all areas within Addition, Subtraction, Multiplication and Division.

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model			$4+3=7$ Use the part-part $10=6+4$ whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.		Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$ 114	$7+4=11$ I have 7 sweets, how many more do I need to make 10. How many more do I add on now?
Represent and use number bonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language ' 1 more than 5 is equal to 6.' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'

Objective \＆ Strategy	Concrete	Pictorial	Abstract						
Adding multiples of ten	Model using Base 10，bead strings， Numicon and place value counters．	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$						
Use known number facts Part part whole	Children ex－ plore ways of making num－ bers within 20	$\begin{gathered} \square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	\square $+1=16$ $16-1=$ \square $1+$ \square $=16$ 16 － \square $\square=1$						
Using known facts	$\begin{aligned} & \square_{\square} \quad+\square_{\square}^{\square}=\square_{\square}^{\square_{\square} \square_{\square}} \\ & \square \square \square+\square \square \square \end{aligned}$	$\begin{aligned} \because+\because & =\vdots \\ \\|+\\| \\| & =\\| \\| \\| \\ \square \square+\text { 日品 } & =\text { 昌品 } \end{aligned}$ Children draw representations of T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$						
Bar model	$3+4=7$	$7+3=10$	23 2 7$23+25=48$						

Objective \& Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $17+5=22$ $5+17=22$ $22-17=5$ $22-5=17$
Add a 2 digit number and tens	Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2-digit numbers	HA Model using Base 10 , place value counters and Numicon. Exchange ten ones for one ten	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.

	Concrese	corotia	Abstrat	Y 3
mommic	$\pm . .$.		223	
cumamemo	maxmememememe		+114	
mome			337	
	$\bigcirc \cdot$			
	O			D
		$\because: 8$	$20+5$ $40+8$	
		- $\because 8$	$\frac{40+8}{60+13}=73$	-
	\%eme	5 1	Smememe	+
	¢			
	∞ \% 80		$\frac{621}{11}$	0

Objective \& Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the parts, what is the other part? $10-6=4$		Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5.	Jump back 3 first, then another 4 . Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10? How many left to take off?
Bar model	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

Objective \& Strategy	Concrete	Pictorial	Abstract	
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & \sum_{3,3}^{3} \quad 333 \\ & 20-4= \end{aligned}$	$20-4=16$	
Partitioning to subtract without regrouping 'Friendly numbers'	$34-13=21$ Use Base 10 to show how to partition the number when subtracting without regrouping.	Children draw representations of Base 10 and cross off. $43-21=22$	$43-21=22$	
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	34-28 Use a bead bar or bead strings to model counting to next ten and the rest.		$93-76=17$	

Objective \& Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use Base 10 or Numicon to model	Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -\frac{20+7}{20+4} \\ \hline 20+3 \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with Base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange.	Children may draw Base ten or PV counters and cross off.	 Begin by partitioning into pv columns Then move to formal method.

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	$234-179$ Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} 26154 \\ -\quad 1562 \\ \hline 1192 \end{array}$ Use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} { }^{2} 8^{\circ} \times 10^{1} X^{\prime} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for place- $\begin{array}{r} 7^{10} x^{\prime} 69 \cdot 0 \\ -\quad 372.5 \\ \hline 6796.5 \end{array}$
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			

 Strategy	Concrete	Pictorial	Abstract
Repeated addition	Use different objects to add equal groups. '... groups of... is'	Use pictorial including number lines to solve problemikere are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to - 2 lots 5,3 lots of 2 etc.	Draw representations of arrays to show understanding	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

Objective \& Strategy	Concrete	Pictorial	Abstract	
Multiplication is Commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.		
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.	

[^0]

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplying decimals up to 2 decimal places by a single			Remind children that the single digit belongs in the units column. Line up the decimal points in the question and the answer.
			$3 \cdot 19$
			$\times 8$
			$25_{1}^{5} \cdot 5$
Short multiplication			
24×6 becomes	342×7 becomes	2741×6 becomes	
24	342	$\begin{array}{lllll}2 & 7 & 4 & 1\end{array}$	
\times	- 7	$\times 6$	
144	$\begin{array}{llll}2 & 3 & 9 & 4\end{array}$	$\begin{array}{lllll}1 & 6 & 4 & 4 & 6\end{array}$	
2	21	42	
Answer: 144	Answer: 2394	Answer: 16446	
Long multiplication			
24×16 becomes	124×26 becomes	124×26 becomes	
$2 \quad 4$	$\begin{array}{lll} 1 & 2 & \\ 1 & 2 & 4 \end{array}$	$\begin{array}{lll} 1 & 2 & \\ 1 & \mathbf{2} & \mathbf{4} \end{array}$	
$\times 16$	26	$\times 26$	
240		744	
$1 \begin{array}{lll}1 & 4 & 4\end{array}$	$\begin{array}{llll}2 & 4 & 8 & 0 \\ & 7 & 4 & 4\end{array}$	$\begin{array}{lllll}2 & 4 & 8 & 0\end{array}$	
388	$\begin{array}{llll}3 & 2 & 2\end{array}$	$\begin{array}{llll}3 & 2 & 2 & 4\end{array}$	
	$1{ }^{1} 1$	$\begin{array}{ll}1 & 1\end{array}$	
Answer: 384	Answer: 3224	Answer: 3224	National Curriculum 2014

National Curriculum 2014

Short division
$98 \div 7$ becomes

Answer: 14
$432 \div 5$ becomes

Answer: 86 remainder 2
$496 \div 11$ becomes
$\begin{array}{lllll} & & & 4 & 5 \\ & 1 & 1 \\ 4 & 9{ }^{5} 6\end{array}$ Answer: $45 \frac{1}{11}$

$432 \div 15$ becomes

$\begin{array} { l l | l l l } { } & { } & { } & { 2 } & { 8 } \\ { \hline } \end{array} 5 \longdiv { 4 } \begin{array} { l l l } { 3 } & { 2 } \end{array}$

$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	

$\begin{array}{llll}1 & 2 & 0 & 15 \times 8 \\ & 1 & 2 & \end{array}$
$\frac{12}{15}=\frac{4}{5}$
Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes

			2	8	8
1	5	4	3	2	0

3	0	\downarrow
1	3	2

$\begin{array}{llll}1 & 2 & 0 & \downarrow \\ & 1 & 2 & 0\end{array}$
$\begin{array}{lll}1 & 2 & 0\end{array}$

Answer: 28.8

The illustrations of formal methods from the National Curriculum are some examples.
For multiplication, some pupils may include an addition symbol when adding partial products.
For division, some pupils may include a subtraction symbol when subtracting multiples of the divisor (National Curriculum 2014).

[^0]: elled alongside

